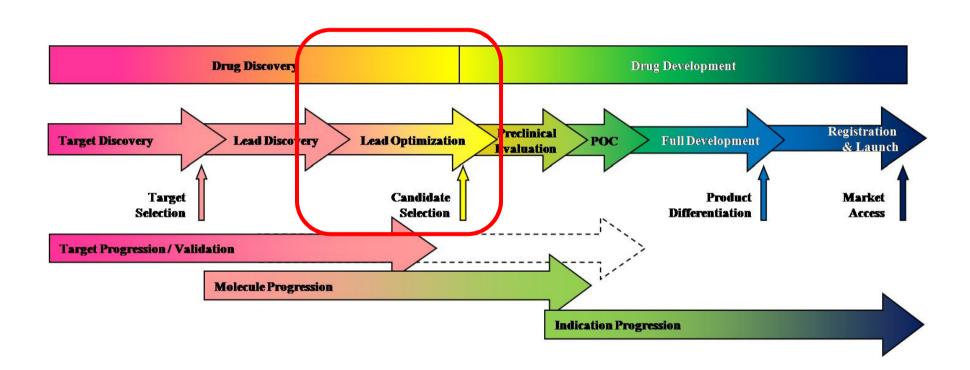


Selection of a Candidate Compound: Studies to Identify Likely Candidates

A presentation by Sally Old, PhD, Exec Director, Early Development, Covance Laboratories Ltd

Learning Outcomes

- Awareness of Drug Discovery process
 - And how this links into Non-clinical Development
- Candidate Selection
 - Key considerations leading to selection of a candidate compound
 - Understanding of types of studies conducted
- Relevance & impact for future development of compound

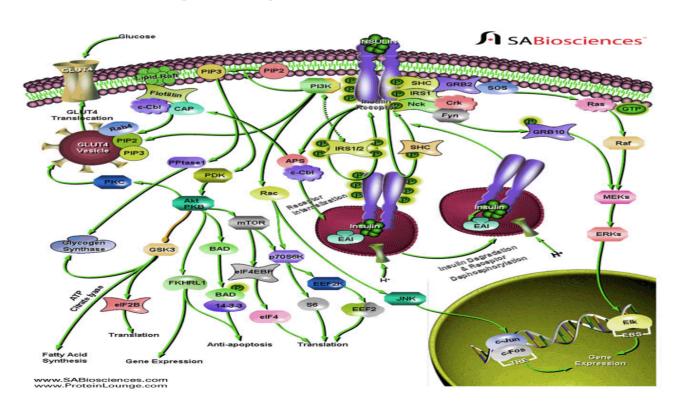

In This presentation we will cover

- Overview of Drug Development "continuum"
- Drug Discovery
 - Key considerations, role of Lead Optimisation and Candidate Selection
 - "Typical" process and methodologies
 - Regulatory requirements
 - Interpretation and use of data
- Concluding comments

The Discovery-Development continuum

Why is Drug Discovery Important?

Choosing the right compound to develop is critical to the long term success


The drug needs to be

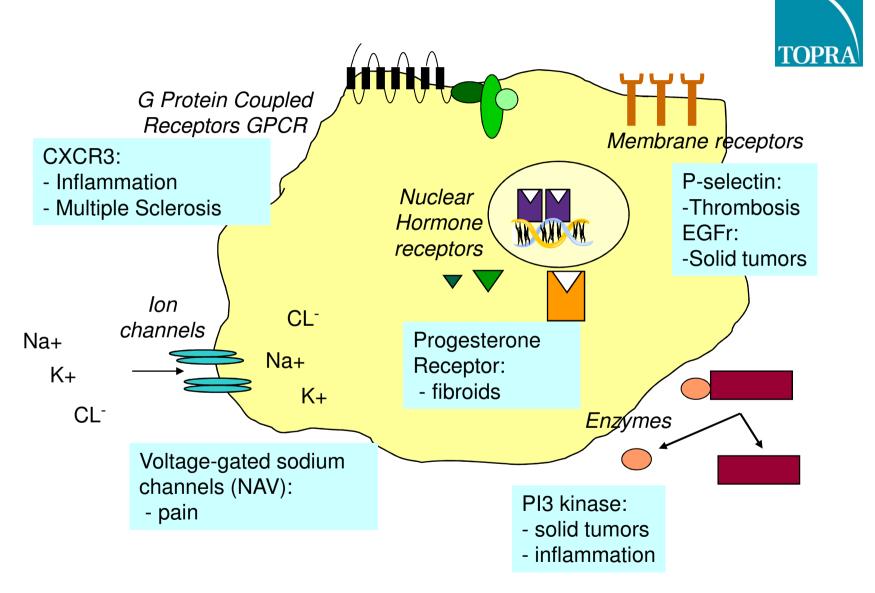
- clinically effective
- safe
- cost effective
- reproducibly manufactured in high quality
- commercially viable

Integration of efficacy and safety evaluations in early drug discovery improves the probability of technical success

How are Drugs Discovered?

- 1. Identify a medical need
- 2. Understand the underlying mechanism
- 3. Identify a molecular target
- 4. Identify a lead compound
- 5. Identify a commercially viable product
- 6. Move into drug development

Target Considerations


Target Characterization

- Tissue distribution and expression levels
- Pathway
- In vitro expression of protein
- Assay development

Target Validation – evidence that affecting the target will modify the disease

- Cell-based models
- Animal models
- Clinical evidence
- Biomarkers

Target Types - Examples

Identification of lead compounds

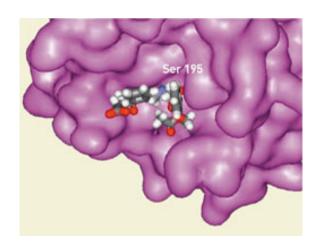
TOPRA

Combinatorial chemistry

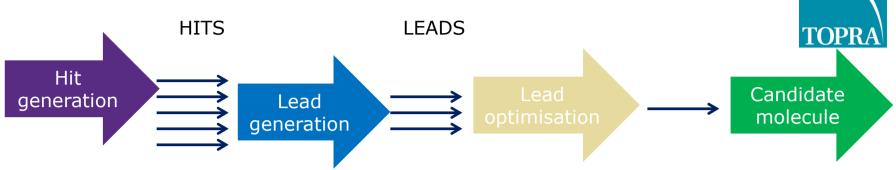
Synthesis of thousands of lead compounds

Chemical libraries

High-throughput screening


- Binding assays
- Activity assays
- Cell-based assays

Molecular modeling


- 3-dimensional images of macromolecular binding site
- Structure-based drug design

Enhancement of existing compounds

- Improve efficacy, eg statins
- Reduce drug interactions e.g. terfenidine -> fexofenidine
- Improve bioavailability or duration of action

Selection of a candidate compound

- Drug development: starting with the end in mind enables the right foundation to be laid at the start
- Lead optimisation to candidate selection can be time consuming and expensive
- Important to prospectively define how will you select your candidate molecule
- Decide what attributes are important for the molecule
 - For example what is the desired pharmacological profile?
 - Affinity for target, safety, pharmacokinetics and ADME (absorption, distribution, metabolism, elimination, toxicology)
- Design the studies to generate the data to enable the decisions to be made

>700,000 cmpds	100s cmpds	4 – 7 cmpds	2 Series	1 compound	

- in vitro assays
 - Provide ADME properties
 - Physicochemical and pharmacokinetic (PK) measurements
- Examples include
 - Aqueous solubility: Important for in vitro assays and in vivo delivery of drug
 - Log $D_{7.4}$: Measure of lipophilicity; movement across membranes (e.g. BBB)
 - Hep G2 hepatotoxicity: Surrogate for effects of toxicity on human liver
 - Cytotoxicity in suitable cell line: Likelihood of cellular toxicity in vivo
 - ADME see following slide

Assessment of DMPK Properties

Determine the "drugability" of the molecule

		TOPRA		
		 Moderate to high absorption 		
A	Caco-2	 Mechanism of absorption 		
	IV/PO PK screening	 Bioavailability 		
		 Animal pharmacokinetics 		
A/D	P-gp via Caco-2	Efflux transporter substrate for absorption & impact on CNS uptake		
	RBC distribution*	Interspecies comparison to better interpret biological and tox		
	Plasma protein binding	results		
		 Brain uptake for centrally acting compounds or potential for CNS based adverse events 		
	Brain to plasma ratio*	ONO based adverse events		
M (Microsomal incubation	Projection of human clearance		
	Hepatocyte incubation	 Cross-species metabolite comparison (coverage of human metabolites) 		
	CYP IC ₅₀	Potential for drug-drug interactions		
	PXR activation	Potential for CYP or P-gp induction		
	Reaction phenotyping	Role of polymorphic enzymes		
Е	PK Screening w/ urine analysis	Animal pharmacokinetics and mechanism of clearance		
		1.2		

- Biochemical Assay
- Selectivity Assay
- Cellular Assay

• PK/PD

- in vivo PK
- Multiple doses
- Different species (support species selection)

• in vivo efficacy

- Single and repeat dose to confirm *in vivo* pharmacologic effects

Preliminary safety (non-GLP)

MTD studies – to help design pivotal tox studies

In Vitro Assays

Provide a readout in a test tube, plate or cell culture system to identify molecules that "hit" a target

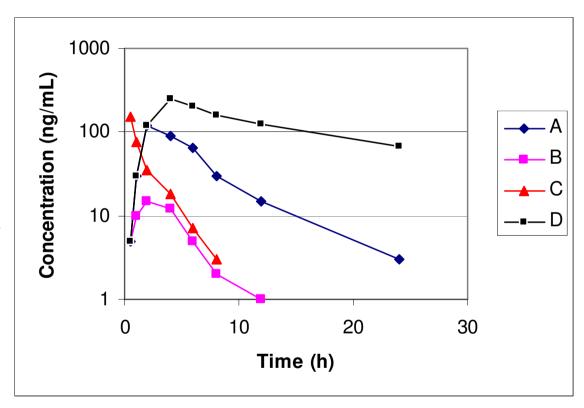
- Activation of epidermal growth factor receptor [EGFR] tyrosine kinase, up-regulated in cancer
 - Measure level of tyrosine kinase autophosphorylation
- Inhibition of tumor necrosis factor [TNF], an inflammatory cytokine with a monoclonal antibody
 - Binding assay to measure affinity
 - Cell-based assay to measure neutralization of cytotoxic effect of TNF

Pharmacokinetic Modeling

In Vivo PK

In Vitro Scaling

Pharmacology


Clinical Projections

Drive Towards an Appropriate Target Clinical Profile

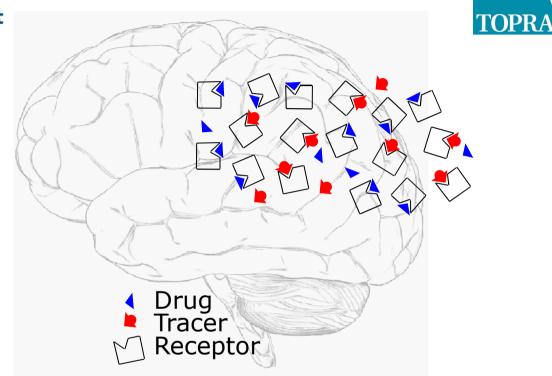
Pharmacokinetic Screening

- Pharmacokinetics of drug candidates in animals are often predictive of PK in human
- Test compounds are dosed to rodents, dogs, or primates
- Drug levels measured by high throughput methods
- PK parameters may be optimized based on therapeutic target
 - Onset of action
 - Duration of action
 - Bioavailability

In Vivo Assays

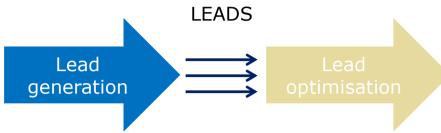
Animal models of disease to show that a molecule not only TOPRA hits the target but has the desired effect

- Tumors known to express over-activated EGFR could be transplanted into animals to assess the effects of potential inhibitors
 - Effects on tumor growth
 - Effects on EGFR autophosphorylation Western blot
- For anti-TNF antibodies, measure reduction in inflammatory response in various animal models of inflammation
 - Collagen-induced arthritis
 - Mouse autograft model
- Antidiabetic compounds
 - db/db mouse model
 - Feed high fat diets


The same assay may be applied to address either safety or efficacy issues; data interpretation is different

- Example: Seizure threshold study
 - Safety Application Identify adverse effects of compound on convulsive liability
 - Efficacy Application Identify compound that might be effective in treating epilepsy

Receptor Occupancy [in vivo]

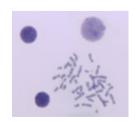

Does the drug reach the target receptor?

- 5-HT1a, 2a, 2c Receptors
- Cannabinoid-1 Receptor
- Kappa Opiate Receptor
- Mu Opiate Receptor
- Delta Opiate Receptor
- Dopamine-1, -2 Receptors
- Serotonin Transporter
- Dopamine Transporter
- Norepinephrine Transporter
- mGlu5 Receptor
- mGlu1 Receptor
- Nicotinic α4β2 Receptor
- Histamine-1 Receptor

- 1. Dose animal with test compound
- 2. Dose animal with tracer
- 3. Analyze tracer bound to receptor

- Preliminary safety (non-GLP)
 - MTD studies to help design pivotal tox studies
- Depending on the molecule and risk may also conduct
- Genotoxicity
 - See next slide
- Safety Pharmacology
 - Evaluation can be incorporated into preliminary toxicology/efficacy studies
 - Cardiovascular
 - CNS
 - Respiratory
 - Gastrointestinal

Screening – Genetic Toxicology



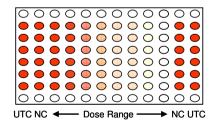
Genetic Toxicology

- Philosophy
 - Flexible approach
 - Scaled down Regulatory assays often used (best prediction for later in development)
- Options
 - in silico analysis can be useful as first step (e.g. Derek Nexus/ Leadscope)
 - Include in vitro cell-based assays for gene mutation & chromosomal damage

Screening – Genetic Toxicology

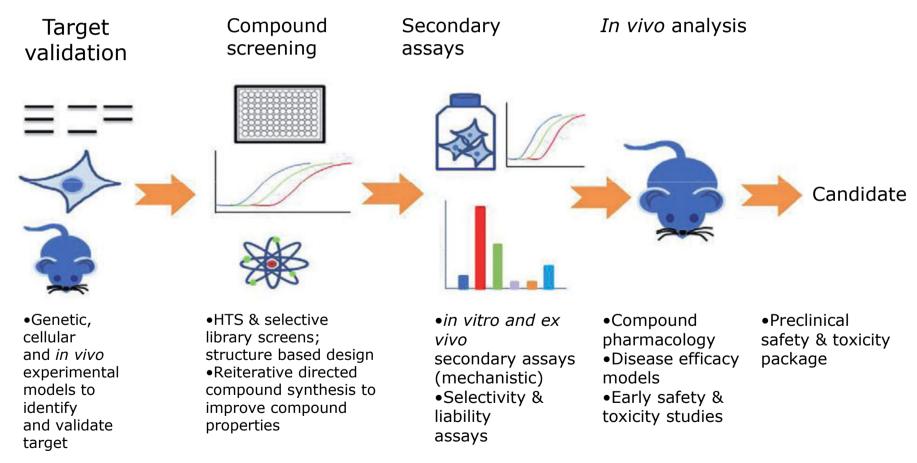
TOPRA

Typical screening assays


- Ames assay (bacterial gene mutation)
 - Normally 2 of the 5 standard strains used (TA98 and TA100)

Mini-Ames test (modified bacterial mutation test)

- In vitro micronucleus in mammalian cells (detection of chromosomal damage/aneuploidy)
 - Conducted in human lymphocytesOR
 - Conducted in cell lines such as CHO / L5178Y / TK6


 Screens for other Genetic Toxicology endpoints and also Cytotoxicity may also be used

Drug discovery process and methodologies - summary

Reference: Hughes JP et al (2011) Brit J. Pharmacol . 162 1239-1249

GUIDANCE DOCUMENTS: PHARMACOLOGY

- ICH M3(R2): Non-clinical safety studies for the conduct of human clinical trials and marketing authorisation for pharmaceuticals
 - Primary PD studies (in vivo and/or in vitro) intended to investigate the mode of action and/or effects of a substance in relation to its desired therapeutic target
 - Generally conducted during the discovery phase of pharmaceutical development
 - Not conducted in accordance with Good Laboratory Practices (GLP)
 - Can contribute to dose selection for both non-clinical and clinical studies
 - Safety pharmacology (S7A)

GUIDANCE DOCUMENTS: PHARMACOLOGY

• S7A Safety Pharmacology Studies for Human Pharmaceuticals

- Studies that investigate the potential undesirable pharmacodynamic effects on physiological functions in relation to exposure in the therapeutic range and above
- Primary: Studies on the mode of action and or effects in relation to the desired therapeutic target
- Secondary: Studies on the mode of action and/or effects not related to the desired therapeutic target
- Rational Approach in Design and Conduct
- Based on Pharmaceutical's Properties and Uses Scientifically Valid Methods
 - Use of New Technologies and Methodologies is encouraged
 - Potential to Incorporate SP Endpoints into Toxicology, Kinetics, Clinical studies etc.
- ICH S7B: The Non-clinical Evaluation of the Potential for delayed Ventricular Repolarization (QT Interval Prolongation) by Human Pharmaceuticals
- ICH S7A and S7B are discussed in detail in another presentation

GUIDANCE DOCUMENTS: PHARMACOLOGY

Pharmacology studies

- Prior to Phase I studies
- Preliminary characterization of the mechanism(s) of action and schedule dependencies
- Anti-tumor activity of the pharmaceutical should have been made
- Appropriate models should be selected based on target and mechanism of action
- These studies can:
 - provide nonclinical proof of principle;
 - guide schedules and dose-escalation schemes;
 - provide information for selection of test species;
 - aid in start dose selection and selection of investigational biomarkers, where appropriate; and,
 - if relevant, justify pharmaceutical combinations
- Understanding the secondary pharmacodynamic properties of a pharmaceutical could contribute to the assessment of safety for humans, and those properties might be investigated as appropriate

GUIDANCE DOCUMENTS: PHARMACOKINETICS

• ICH S3A: Toxicokinetics - A Guidance for Assessing Systemic Exposure in Toxicology Studies

- The primary objective of toxicokinetics is to describe the systemic exposure achieved in animals and its relationship to dose level and the time course of the toxicity study.
- Secondary objectives are:
 - to relate the exposure achieved in toxicity studies to toxicological findings and
 - contribute to the assessment of the relevance of these findings to clinical safety.
 - to support the choice of species and treatment regimen in non-clinical toxicity studies.
 - to provide information which, in conjunction with the toxicity findings,
 contributes to the design of subsequent non-clinical toxicity studies
- If the tox study is to GLP the TK assessment needs to be to GLP

GUIDANCE DOCUMENTS: PHARMACOKINETICS

- Guideline on the non-clinical development of fixed combinations of medicinal products (EMEA/CHMP/SWP/258498/2005)
- Potential additive, potentiation or antagonistic effects of the compounds when used together with respect to the pharmacology, pharmacokinetics or toxicology of the combination under development
- What you do (which studies and their design) to support them from a non-clinical perspective depends on what they are:
 - Fixed combination of compounds already approved as free combination therapy
 - Fixed combination of approved compounds NOT approved as free combination therapy
 - Fixed combination containing one or more New Active Substances

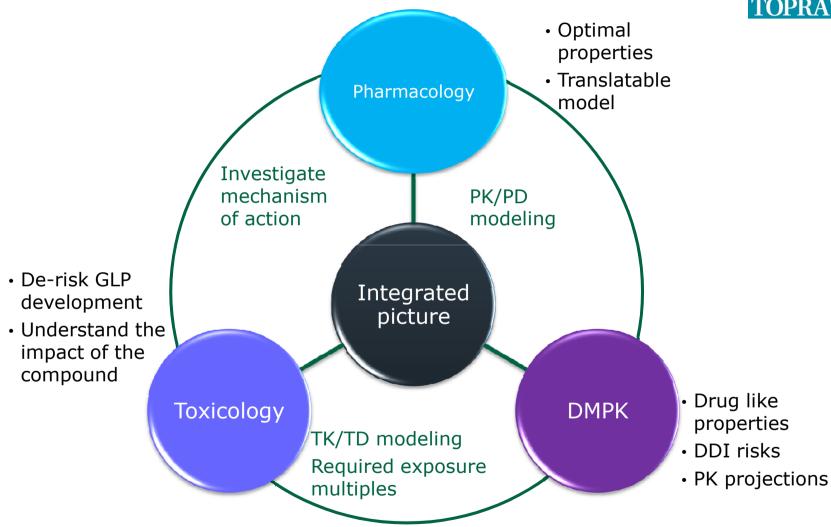
Candidate Selection: Interpretation and use of data

Selecting the right molecule to advance

Product Target Profile

- Indication
- Dosing

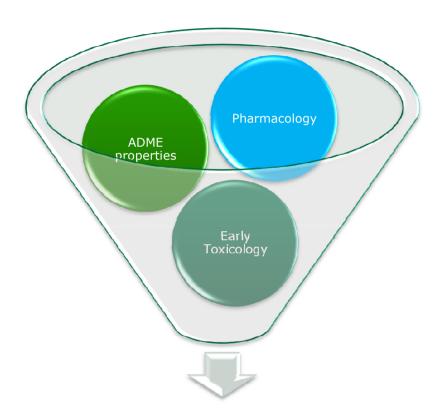
- Potency
- Market landscape


Defined Scientific Endpoints

- Receptor interaction
- Performance against pharmacological model
- Active comparators

- Predicted clinical properties
- Potential toxicology outcome

Candidate Selection: Interpretation and use of data



Advancing the Molecule

Bringing the data & expertise together for decision making

Candidate Molecule

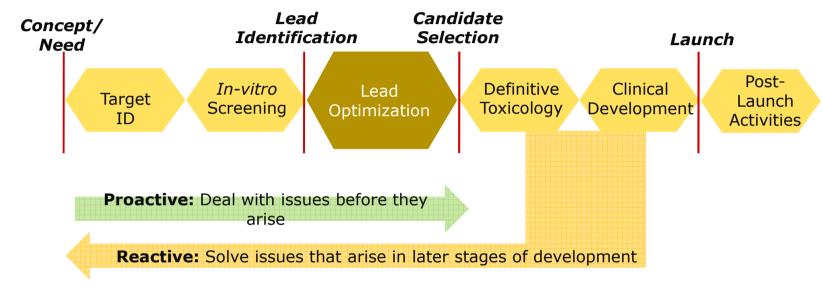
- Collation of individual scientific results
- Assess the experimental results against the Product Target Profile
- Choose the best molecule to advance

Medical Need vs. Commercial Viability

Risk/Benefit Ratio

 What is the feasibility of developing a drug with a favorable risk/benefit ratio?

"Drugability"


What is the feasibility of delivering a therapeutic to the target

Commercial Viability

- What is the likelihood that the developed drug will recover development costs and return a profit?
 - Commercial discussions are happening earlier and earlier
 - Includes regulatory environment and cost/benefit discussions

The Drug Development [re]Cycle

Integrating Safety and Efficacy improves the probability of technical success

In this presentation we covered

- Overview of Drug Development "continuum"
- Drug Discovery
 - Key considerations, role of Lead Optimisation and Candidate Selection
 - "Typical" process and methodologies
 - Regulatory requirements
 - Interpretation and use of data
- Concluding comments

Recommended references

- Hughes J.P., Rees S., Kalindjian, S.B., Philpott, K.L. Principles of early drug discovery. Br J Pharmacol, 2011; 162(6): 1239–1249
- Pritchard J.F., Jurima-Romet M., Reimer M.L., Mortimer, E, Rolfe B, Caven M.N. Making better drugs: Decision gates in non-clinical drug development. Nat Rev Drug Discov. 2003 Jul;2(7):542-53.
- Hefti, F. Franz. Requirement for a lead compound to become a clinical candidate. BMC Neurosic 2008; 9(Suppl 3): S7.
- ICH series of guidelines

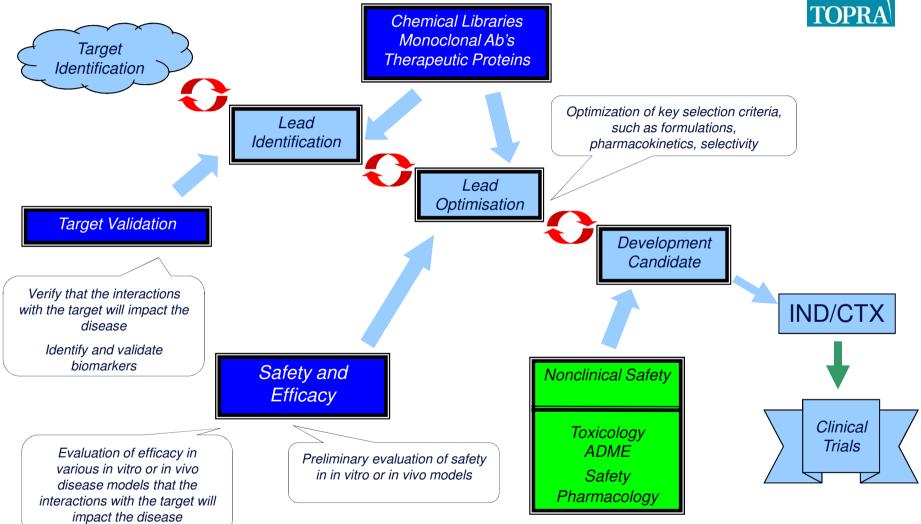
QUESTIONS?

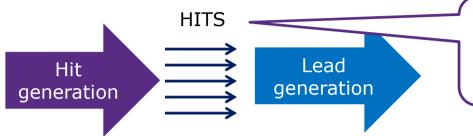
Acknowledgements

William Hanlon, Shawn Heidel, Mark Holbrook, Michelle Scott, Marina Seme Nelson, Margaret Urwin [Covance colleagues]

Contact details

Name: Sally Old **Tel:** 01665 608300


Email: sally.old@covance.com


Back-up slides

Drug Discovery Process; summary

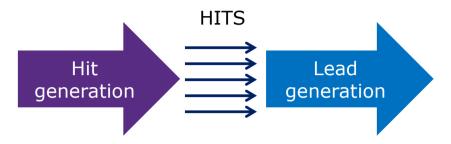
Hit: a compound which has the desired activity in a compound screen and whose activity is confirmed upon retesting

High throughput screening (HTS)

- Entire compound library directly against drug target (or may use cell-based assay)
- Activity is dependent upon the target
- Require secondary assays to confirm the site of action
- Uses complex laboratory automation
- Assumes no prior knowledge of nature of the chemotype likely to have target activity

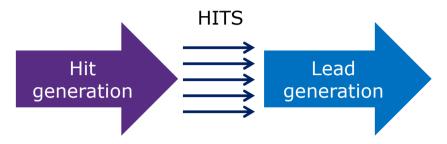
Focused or knowledge-based screening

- Selecting smaller subsets of molecules from chemical library
- Based on knowledge of target protein and literature (or patent precedents)


Fragment screening

- Generation of very small molecular weight compound libraries
- Typically accompanied by generation of protein structures to enable progression

Physiological screening


- Tissue-based approach
- Look for response more aligned with final desired in vivo effect

- Chemistry programs are conducted in parallel to screening programs
 - Improve the potency, selectivity and physiochemical properties of the molecule
- Further data generation to support hypothesis that intervention at the drug target will have efficacy in the disease state
- Output from the screen is the HIT molecule
- The HITS then need to be filtered/triaged:
 - Remove frequently occurring molecules
 - Grouped according to structural similarity: broad spectrum of classes

- Generate dose-response curves in the primary assay for each HIT
 - Looking for reversibility
- Assess surviving HITS in a secondary assay (if available)
 - Not necessarily a HT assay
 - Effect of the compounds in a functional response
 - e.g. second messenger assay or in a tissue-or cell-based bioassay
 - Provide assurance that compounds are able to modulate more intact systems

Chemistry analysis

- Cluster compounds into groups (could form the basis of lead series)
- Identify structure/activity relationships
- Synthesis aspects assessed